Stability estimate for a partial data inverse problem for the convection-diffusion equation

نویسندگان

چکیده

<p style='text-indent:20px;'>In this article, we study the stability in inverse problem of determining time-dependent convection term and density coefficient appearing convection-diffusion equation, from partial boundary measurements. For dimension <inline-formula><tex-math id="M1">\begin{document}$ n\ge 2 $\end{document}</tex-math></inline-formula>, show (modulo gauge term) admits log-log stability, whereas log-log-log estimate is obtained for coefficient.</p>

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

Finite Element Methods for Convection Diffusion Equation

This paper deals with the finite element solution of the convection diffusion equation in one and two dimensions. Two main techniques are adopted and compared. The first one includes Petrov-Galerkin based on Lagrangian tensor product elements in conjunction with streamlined upwinding. The second approach represents Bubnov/Petrov-Galerkin schemes based on a new group of exponential elements. It ...

متن کامل

Inverse scattering problem for the Impulsive Schrodinger equation with a polynomial spectral dependence in the potential

In the present work, under some di¤erentiability conditions on the potential functions , we …rst reduce the inverse scattering problem (ISP) for the polynomial pencil of the Scroedinger equation to the corresponding ISP for the generalized matrix Scrödinger equation . Then ISP will be solved in analogy of the Marchenko method. We aim to establish an e¤ective algorithm for uniquely reconstructin...

متن کامل

On the Inverse Problem for a Fractional Diffusion Equation

We consider the inverse problem of finding the temperature distribution and the heat source whenever the temperatures at the initial time and the final time are given. The problem considered is one dimensional and the unknown heat source is supposed to be space dependent only. The existence and uniqueness results are proved.

متن کامل

Von Neumann stability conditions for the convection-diffusion equation

A method is presented to easily derive von Neumann stability conditions for a wide variety of time discretization schemes for the convection-di usion equation. Spatial discretization is by the -scheme or the fourth order central scheme. The use of the method is illustrated by application to multistep, Runge-Kutta and implicit-explicit methods, such as are in current use for ow computations, and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Evolution Equations and Control Theory

سال: 2022

ISSN: ['2163-2472', '2163-2480']

DOI: https://doi.org/10.3934/eect.2021060